A polynomial interpolation process at quasi-Chebyshev nodes with the FFT

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A polynomial interpolation process at quasi-Chebyshev nodes with the FFT

Interpolation polynomial pn at the Chebyshev nodes cosπj/n (0 ≤ j ≤ n) for smooth functions is known to converge fast as n → ∞. The sequence {pn} is constructed recursively and efficiently in O(n log2 n) flops for each pn by using the FFT, where n is increased geometrically, n = 2i (i = 2, 3, . . . ), until an estimated error is within a given tolerance of ε. This sequence {2j}, however, grows ...

متن کامل

Multivariate polynomial interpolation on Lissajous-Chebyshev nodes

In this contribution, we study multivariate polynomial interpolation and quadrature rules on non-tensor product node sets linked to Lissajous curves and Chebyshev varieties. After classifying multivariate Lissajous curves and the interpolation nodes related to these curves, we derive a discrete orthogonality structure on these node sets. Using this discrete orthogonality structure, we can deriv...

متن کامل

Bivariate Lagrange Interpolation at the Chebyshev Nodes

We discuss Lagrange interpolation on two sets of nodes in two dimensions where the coordinates of the nodes are Chebyshev points having either the same or opposite parity. We use a formula of Xu for Lagrange polynomials to obtain a general interpolation theorem for bivariate polynomials at either set of Chebyshev nodes. An extra term must be added to the interpolation formula to handle all poly...

متن کامل

Bivariate Polynomial Interpolation at the Geronimus Nodes

We consider a class of orthogonal polynomials that satisfy a threeterm recurrence formula with constant coefficients. This class contains the Geronimus class and, in particular, all four kinds of the Chebyshev polynomials. There are alternation points for each of these orthogonal polynomials that have a special compatibility with the polynomials of lower index. These points are the coordinates ...

متن کامل

Barycentric rational interpolation at quasi-equidistant nodes

A collection of recent papers reveals that linear barycentric rational interpolation with the weights suggested by Floater and Hormann is a good choice for approximating smooth functions, especially when the interpolation nodes are equidistant. In the latter setting, the Lebesgue constant of this rational interpolation process is known to grow only logarithmically with the number of nodes. But ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 2011

ISSN: 0025-5718,1088-6842

DOI: 10.1090/s0025-5718-2011-02484-1